A Low Cost Single Chip VDL Compatible Transceiver ASIC

Robert Becker Honeywell Laboratories

Introduction

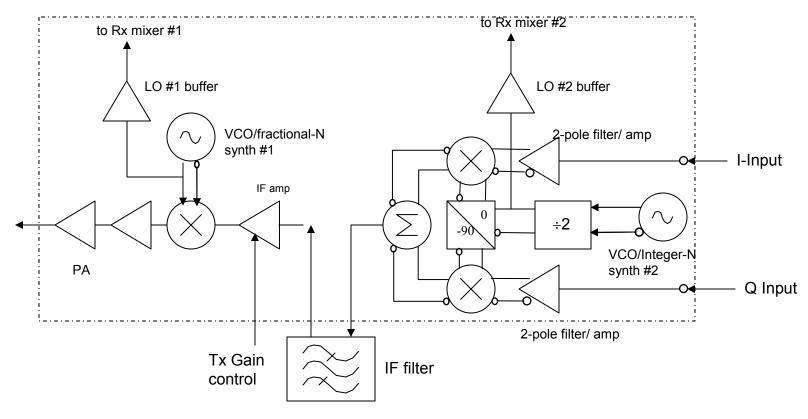
- Rationale for a Single Chip Radio
- Chip Architecture
- Radio Chip Specification
- Application Demonstration System
- Conclusion

- Commercial communications system components increasingly focussed on cellular telephone technology.
 - Larger market than general purpose radio circuits
 - Many traditional sources of generic radio components have quit the market.
 - General purpose radio chip market is too small & profits too limited to appeal to most chip vendors

- Bring technology into the Aeronautical sector
 - Reduces issues with obsolescence
 - reduces product life cycle costs
- Custom designs tailored to specific applications
 - Designed specifically for avionics market
- Reduced component counts are possible
 - Highly integrated designs mean fewer external components

- Control obsolescence
 - Dependence on vendor removed
- Control performance parameters
 - Able to tailor performance to your requirements

- Expensive to create
 - Design costs typically exceed \$1M
- Limited markets
 - Some compromises may be required to increase the market for the design (cost spreading)
 - Per unit costs may run higher than commercial components
- Dependence on foundry process cycles
 - Process for making the chip can go obsolete

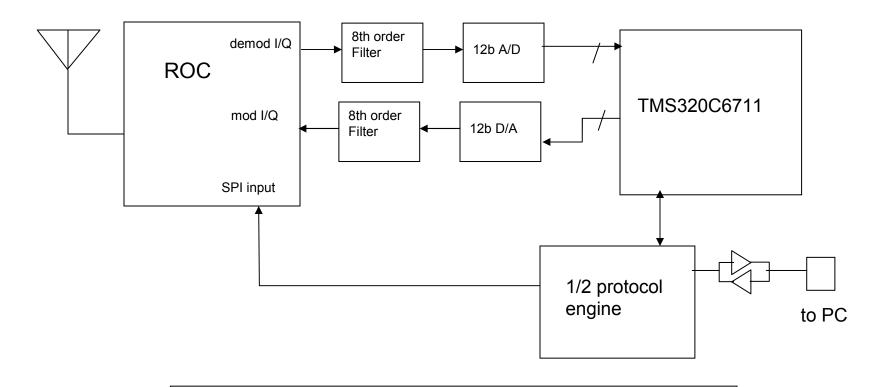

Chip Architecture - Rcvr

Chip Architecture - Xmtr

Transmitter

- Super-heterodyne single/double (switchable) conversion receiver
 - Can be used in either single or double conversion mode
 - Higher performance than direct conversion receivers
 - Better noise figure than direct conversion receivers
 - Higher IP3 point than direct conversion systems

- Why not a more software defined design?
 - Software defined radios are extremely flexible
 - Can adapt to new modulation types with firmware modifications
 - Significant designer control over performance
 - Software radios cost point is higher
 - Maturity of the technology
 - Too power hungry for battery powered applications
 - ill suited to low power applications.


- Analog I/Q demodulator
 - Lower overall power consumption than digital down-conversion and demodulation
 - Uses Johnson counters for nearly perfect I/Q
 LO generation
- Three integrated local oscillators
 - external tank and tuning components required.

- Fully integrated synthesizers for all LO's
 - Integer-N designs for the 2nd & 3rd LO
 - Fractional-N for the 1st LO
 - Offers improved LO noise vis-à-vis integer-N designs
 - Faster frequency switching than integer-N synthesizers.

System Architecture

Transceiver architecture is very simple

Application Range

- Initial target is low cost devices
 - cost sensitive market
 - widest possible ranges of users
 - EFB Air Transport
 - Low cost NEXCOM transceiver General Aviation
 - graduate to expanded markets with later designs
- Battery operation
 - independent of aircraft systems

Application Range

- Target operating range is 50MHz to 450MHz
 - Covers marker beacon, comm, nav, ILS, glideslope, & MilCom bands
 - larger application market means lower per-unit costs

Application Range

- Present design targets for VDL applications
 - Present IIP3 point is too low for fully certified NEXCOM communications products
 - Future designs will address higher degrees of certification

Chip Specifications

DC Characteristics (25 °C)

Parameter	Conditions	Min.	Тур.	Max.	Units
Power	Vdd	3.0		5.0	V
supply	Idss	40		75	mA
Logic	Vih (3.0V < Vdd < 5.0V)	Vdd/2 + 0.6		Vdd + 0.6	V
Interface	Vil (3.0V < Vdd < 5.0V)	Vss		0.8	V
	Voh (3.0V < Vdd < 5.0V, Isrc < 3 mA)	Vdd - 0.5		Vdd – 0.5	V
	Vol (3.0V < Vdd < 5.0V, Isink < 10 mA)	0.4		0.5	V

Chip Specifications

AC Characteristics

Parameter	Conditions	Min.	Typical	Max	Units
Operating frequency range		20		450	MHz
Rx noise figure			4		dB
Rx IIP3			4		dBm
1 st IF bandwidth	-3dB bandwidth	2		45	MHz
2 nd IF bandwidth	-3dB bandwidth			15	MHz
I/Q demodulator bandwidth	-3dB bandwidth			1	MHz
Demodulator output				1	Vp-p
I/Q modulator bandwidth	-3dB bandwidth			1	MHz
I/Q modulator input				1	Vp-p
I/Q Modulator bandwidth	-3dB bandwidth	5		70	MHz
Transmitter IF amp gain range		-10		20	dB
Output power step size			6		dB
# power steps			5		
Transmitter output power				10	dBm

Vdd = 5.0V, 25°C

Chip Status

- 2nd pass chip submitted to AMI for fabrication
- Expect parts from fab by 20 July, 2004

Application Demonstration

- VDL mode-3 data link
 - Pressing need to get better information to pilots
 - Better info improves flight safety
 - Weather is a significant cause of fatal accidents

Why a Data Link Demonstration?

Would you rather have this?

2004/04/06 17:20 KBJI 061720Z 061818 33012KT P6SM SKC FM0000 VRB06KT P6SM SCT250 FM0800 15007KT P6SM SCT120 TEMPO 1115 BKN080 FM1500 18007KT P6SM BKN080 PROB30 1518 -RA OVC030

Why a Data Link Demonstration?

Or, would you prefer this:

A picture just might be worth more than 1000 words...

Data Link Demonstration

- Data links can provide rich and varied information
- Bidirectional data links allow the pilot to request specific information not otherwise available

Demonstration radio is intended to prove a concept, leading to a product

Conclusion

- Radio-on-a-chip can tailored to meet specific requirements
 - Product life-cycle costs can be significantly reduced
 - High initial cost requires careful consideration in deciding to design your own chips
- High levels of integration are possible
 - results in potentially significant reductions in circuit board complexity

